Controlled and reversible binding of positively charged quantum dots to lambda DNA.

نویسندگان

  • Yi Liu
  • Ming-Xi Zhang
  • Zhi-Ling Zhang
  • Hai-Yan Xie
  • Zhi-Quan Tian
  • Kwok-Yin Wong
  • Dai-Wen Pang
چکیده

Biomacromolecules/Nanomaterials bioconjugate complexes have many applications in the interdisciplinary research fields. Accessible and easy synthesis methods of these complexes are the key roles for these applications. High quality water-soluble surface-charged quantum dots (QDs) were successfully prepared via surface modification by amphiphilic surfactants. The positively charged QDs can interact with deoxyribonucleic acid (DNA) molecules to form QDs/DNA bioconjugates via self-targeting electrostatic force. The stability of these QDs/DNA bioconjugates is influenced by ionic strength and concentration of negative or neutral surfactants in the solution. High ionic concentration or ca. 10(-3) mol/L surfactants can break the interaction between the QDs and DNA molecules (Lambda DNA/Hind III Marker segments) and controllably release DNA molecules from these bioconjugates. The conformation of DNA molecules has little change during the binding and releasing process. The condensation of lambda DNA molecules can be induced by positively charged QDs. High resolution transmission electron microscopy experiments have revealed the different stages of DNA condensation process, showing the fine structures of QDs/DNA bioconjugates at biomolecular scale. A long chain DNA molecule starts to self-enwind and condense to a porous globule when it is exposing to positively charged QDs but there is no direct interaction between QDs and DNA at early stages of condensation. After the DNA molecule becomes a compact globule, QDs stick onto its surface via electrostatic force. The coil conformation of the DNA molecules can be recovered from globule structure after DNA molecules are controllably released from bioconjugate complexes. These QDs/DNA bioconjugates have great potential applications for gene delivery and at the same time the fluorescence of QDs can be utilized to monitor the DNA releasing process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins.

Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configu...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Dual role of CdSe quantum dots for simultaneous separation and spectrofluorimetric ultrasensitive determination of heparin

The present study offers a new method based on CdSe quantum dots (QDs) for simultaneous separation and determination of trace levels of heparin (Hep) in human serum samples. In this technique, CdSe QDs perform two different functions in Hep analysis process. Mercaptoacetic acid-capped red CdSe QDs (λex=690 nm) are conjugated to Hep and the Hep-QD conjugation is then used as an extraction...

متن کامل

Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots.

DNA was efficiently bound to water-soluble positively charged CdTe quantum dots (QDs) through complementary electrostatic interaction. These QDs-DNA complexes were disrupted and DNA was released by glutathione (GSH) at intracellular concentrations. Interestingly, there was almost no detectable DNA released by extracellular concentration of GSH. The formation of QDs-DNA complexes and GSH-mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2008